
ALTS API Overview

ALTS Webservice
The ALTS service is a REST-based service used to interact with ALTS without visiting the ALTS website.

Development Location:
API Access Portal/Token Acquisition: https://apiregistration-uat.mvtrip.alabama.gov/
API: https://altsapi-uat.mvtrip.alabama.gov/api/v1.0/
Token API Endpoint: https://capslockoidc-uat.mvtrip.alabama.gov/connect/token

Production Location:
API Access Portal/Token Acquisition: https://apiregistration.mvtrip.alabama.gov/
API: https://altsapi.mvtrip.alabama.gov/api/v1.0/
Token API Endpoint: https://capslockoidc.mvtrip.alabama.gov/connect/token

Service Authentication
The service authentication mechanism used by our APIs is OpenID Connect (https://openid.net/specs/openid-connect-
core-1_0-final.html). To securely connect to any of our APIs, your application will need to pass an access token via a
standard HTTP request header; otherwise, your application will receive an HTTP 401 unauthorized response. Your
application will also need to obtain a refresh token for cases where the access token expires. The refresh token can be
used to obtain a new access token without requiring user interaction. Storage for both of these tokens should be as
secure as possible since access to them means direct access to our APIs. Below are the steps required to obtain,
maintain, and use access and refresh tokens.

Obtaining Tokens
Steps to obtain tokens:

1. Have the user of the application go to the MVTRIP API access portal and login with their MVTRIP credentials.
The URLs are above, and the correct one to use depends on which environment you need credentials and/or
tokens for.

https://apiregistration-uat.mvtrip.alabama.gov/
https://altsapi-uat.mvtrip.alabama.gov/api/v1.0
https://capslockoidc-uat.mvtrip.alabama.gov/connect/token
https://apiregistration.mvtrip.alabama.gov/
https://altsapi.mvtrip.alabama.gov/api/v1.0
https://capslockoidc.mvtrip.alabama.gov/connect/token
https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html

Once you log in for the first time, you may be asked to agree to the ADOR Confidentiality and Disclosure

2. Once authenticated, they will need to generate a new client id and password for their client by clicking the

 button. If they have already done this and are simply requesting new tokens then you
can skip to step 4.

3. After the client id and password have been generated have the user click the button for each value and
paste it into the appropriate form in your application.

4. After obtaining and setting the client credentials have the user click the button. You will be asked
which API you wish to generate tokens for. Select “altsApi”

and click the button.
Note, if they already have a valid set of access and refresh tokens, the system will warn them that proceeding
with the request will invalidate the old tokens.

5. Once the tokens have been generated, you should see something like this

The user should click for each token and then paste it into the appropriate form in your application.
These tokens will only be displayed once. After the user navigates away from this page they will no longer be
able to see their tokens.

A few things to note about obtaining tokens:

• Your application will need some form the user can paste the access and refresh tokens into, as well as the client
credentials. This is probably best done on install and in the settings/configuration since these values can change,
though they should not very frequently (see the next bullet).

• Access tokens are valid for 8 hours after issuance, and refresh tokens are valid for 30 days. Once an access token
expires, any request using it will receive a 401 unauthorized response. At this point, your application should use
the refresh token obtained above to get a new access and refresh token pair. As long as the token is refreshed
every 30 days, the user should be able to avoid going back to the website to obtain a new pair.

• Tokens should be obtained by the user who is performing the actions in your application, and NOT be shared
across one user account. Every method called on our APIs will be logged as the user who obtained the token.

• Our APIs will determine access rights on the requested method by checking the privilege level of the user who
obtained the token.

Access token usage
To call any of our APIs, you will need to pass a valid access token in the HTTP request headers; otherwise, your
application will receive an HTTP 401 unauthorized response. An expired token is treated identically to an invalid token,
so your application should watch for 401 responses to know when to use the refresh token to obtain a new access and
refresh token pair. To pass the access token simply add the following header to your HTTP request:

 Name: Value

Authorization: Bearer ACCESSTOKENVALUE

Refresh token usage
If your token has expired or been revoked, you may still receive an HTTP 401 unauthorized response when calling our
APIs. If this happens your application should attempt to get a new access token using its refresh token and client
credentials. To make this request, you will need to call the token endpoint on our identity server. Below are the details
on how to make that request. The example below shows the relative path of /connect/token. The full path is found
above, labeled “Token API Endpoint,” and will depend on which version of the service (e.g. development or production)
you are sending requests to.

Another thing to note in this example is the expected Content-Type. Token requests must be sent as application/x-www-
form-urlencoded. The fields (e.g. client_secret) must be URL/Percent Encoded, and must appear in the body of the
request and not as query string parameters, even though they look similar to query string parameters.

Token Endpoint Request:
POST /connect/token
Content-Type: application/x-www-form-urlencoded

 client_id=YOURCLIENTID
 &client_secret=YOURCLIENTSECRET
 &grant_type=refresh_token
 &refresh_token=YOURREFRESHTOKEN
 &scope=openid%20profile

Token Endpoint Response:
HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 Pragma: no-cache

 {
 "access_token": "TlBN45jURg",
 "token_type": "Bearer",
 "refresh_token": "9yNOxJtZa5",
 "expires_in": 3600
 }

A valid response from the token endpoint means your application should update its current access and refresh token
values to the values received from the endpoint. After that has been done your application can proceed to make
requests to our APIs using the newly obtained access token. Note that if a token is not refreshed more often than 30
days, a new pair cannot be obtained programmatically, and will have to come from the website just as the original pair
did.

https://developer.mozilla.org/en-US/docs/Glossary/percent-encoding

A common tool for testing REST endpoints is Postman. An example of building a request can be seen below:

In the above screenshot, you should not include parameters as part of the query.

Instead, include them in the body, as seen below:

Token revocation
Token revocation can happen for a number of reasons including: your token(s) have been stolen, a user is being
malicious, or your application’s access is revoked. If your application’s tokens are revoked, but you still need access to
the system, you will need to go back to the obtaining tokens setup section of this document and repeat steps 4 and 5 to
obtain a new set of tokens.

Open API
The ALTS API uses OpenAPI (formerly called Swagger) to make it easier for clients to interact. More information about
this project can be found at https://www.openapis.org/faq. One major benefit is that clients can be generated
automatically for a variety of different languages, similar to a WSDL for older SOAP services. For more information about
this, please see https://swagger.io/tools/swagger-codegen/. The API itself also exposes an OpenAPI front-end that
shows a full definition of the endpoints, methods, and models. The address will be the same domain as those above,
with “/swagger” at the end, so for example https://altsapi-uat.mvtrip.alabama.gov/swagger. This page will also have a
link to the most current version of this document.

https://www.postman.com/
https://www.openapis.org/faq
https://swagger.io/tools/swagger-codegen/
https://altsapi-uat.mvtrip.alabama.gov/swagger

Operations
Below is a brief overview of some of the operations the API will support. Model types will appear like this, and in every
case, the model’s definition can be found on the website under the Models section:

Testing API Calls Directly in the API Explorer

It is possible to test most operations directly in the API explorer. At the top of the site there is an button.

Alternatively, on each operation you will also see an open lock icon (). Clicking either of these buttons will display a
box that allows you to add the access token, which will then be sent with any requests made through the site.

Figure 1 Operations / Endpoints

Figure 2 Models

The header that will be added is the standard Authorization header. Similar to adding the Authorization header in
any actual API requests you make, you will need to manually add “Bearer “ (note the space) before your access token
in the test site. So, for example:

Once you click the button, you can close the Authorization dialog.

If you need to update your token or wish to clear it, simply click the button to enter a new one.

Querying for Applications/Titles
There are several options for querying for the existing title or pending application information. The specific options
available on the UI can be seen in Figure 1. It will show the types expected, the return types for each one, and other
relevant information. For example, if you wanted to check for pending applications for VIN 1234, send a GET request to
/api/v1.0/PendingApplicationSummaries/1234. You can test sending requests directly from the browser by clicking the
“Try it out” button.

 Figure 1.2 Submenu of Operations / Endpoints

Note: This is just an example. You can see the full list of operations on the website.

Creating Transfer Applications
Currently, the API only supports creating new Transfer applications for vehicles and manufactured homes. This
functionality will be expanded over time. To create a new vehicle transfer application, you will post a valid
TransferApplication object to /api/Application/Transfer. Likewise, to create a new manufactured home transfer
application, you will post a valid MhTransferApplication object to /api/Application/MhTransfer. In either case, you will
receive a CreateApplicationResult. If there are any validation errors that prevented it from being created or completed,
it will be contained in this object. If the request is successful, the resulting object will contain summary information
about the new application including the application number, and URLs for retrieving it via the API or viewing it in the
ALTS website.

In the current version, to edit an existing application you must visit the ALTS website, but this will also be enhanced in
the future. To have the best chance of completing an application without needing to visit the ALTS website, you can
validate your potential application before attempting to create it. To do this, you must first post your
TransferApplication to /api/v1.0/Application/Transfer/Validate and MhTransferApplications to
/api/v1.0/Application/MhTransfer/Validate. In this case, rather than a full CreateApplicationResult, you will receive
just the list of ValidationFailure objects.

Example Scenarios
The full TransferApplication model contains a large number of properties and objects. This can be a bit overwhelming,
so here are a few example scenarios.

One thing that it helps to remember is that for many of the various properties, you only need include the ones that are
relevant to the application you are trying to create. For example, if a party name belongs to an individual, there is no
need to include LegalBusinessName in your PartyName object.

Another good example of omitting unnecessary properties is the Vehicle object itself. When querying for Applications or
Titles, it is helpful to have some human-readable properties in the objects. For example, MakeName exists as a quick way
to get the Make of the vehicle regardless of whether the Make field is one of the enumerated types (VehicleMakeType
enumeration) or if Make has been set to VehicleMakeType.Other, and a value has been supplied for MakeOtherName. In the
context of creating applications, however, MakeName is not particularly relevant, because it is not a writable field. Because

Figure 3 Example Response

it is not writable, it can be omitted when sending application objects. It does not hurt to send it, but it will be ignored.
Below are a few concrete scenarios that should help illustrate this.

Scenario #1: Create an Out of State Vehicle Application
Using the following JSON request body, you can create a vehicle Transfer application using an Out of State title. In this
example, the party names are all businesses. Because they are all of the Business PartyNameType, notice that the
FirstName, LastName, etc. fields have been omitted. This simplifies creating the JSON payloads. The standard endpoint is
/api/v1.0/Application/Transfer, but in addition to the body of the request, it can take one additional parameter. By
default, ALTS will try to complete the new application so that it is ready to print or submit. If you would rather leave the
application in SavedInProgress status, you may append completeApplication=false to the end of your request, which
would become /api/v1.0/Application/Transfer?completeApplication=false

In this case, we’ll leave it off.

POST /api/v1.0/Application/Transfer

{
 "ApplicationType": "Transfer",
 "ApplicationCategory": "Vehicle",
 "HasBrandChanges": false,
 "HasOperator": false,
 "HasSpecialMailing": false,
 "IsOwnershipChanging": true,
 "SaleInformation": {
 "DealerInventoryDate": "2018-10-25T00:00:00",
 "GrossSellingPrice": 350,
 "TradeInAllowance": 150,
 "PurchasedDate": "2018-11-25T00:00:00"
 },
 "Seller": {
 "SellerTaxIdNumber": "ABC123",
 "SellerLicenseNumber": "492349",
 "SellerLicense": "AutomobileLicense",
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Tennessee",
 "ZipCode": "34952",
 "Country": "Usa"
 }
 },
 "Vehicle": {
 "BodyStyle": "CarryAll",
 "Code": "Used",
 "Color1": "Black",
 "Color2": "Unknown",
 "FuelType": "Gas",
 "GvwrCode": "ZeroTo6K",
 "IsTrailer": false,
 "Make": "Jeep",
 "MakeName": "Jeep",
 "MakeOtherName": "",
 "Model": "GRAND CHEROKEE",
 "NumberOfCylinders": 4,
 "OdometerReading": null,
 "OdometerReadingType": "Exempt",
 "OdometerUnits": "Miles",
 "Vin": "1J4GZ58Y0TC271410",
 "Year": 1996
 },
 "PrimaryDocumentType": "OutOfStateTitle",
 "PrimaryDocument": {
 "IsSurrenderedToAl": true,
 "IsTitleUnderBond": false,

 "TitleNumber": "MS3949243",
 "TitleState": "Tennessee",
 "DocumentType": "OutOfStateTitle",
 "IssueDate": "2018-04-23"
 },
 "IsVehicleLeased": false,
 "Owner": {
 "IsLessor": false,
 "Email": null,
 "Phone": null,
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Alabama",
 "ZipCode": "35401",
 "Country": "Usa"
 }
 },
 "Lienholders": [
 {
 "LienDate": "2018-11-25T00:00:00",
 "Email": null,
 "Address": {
 "StreetAddress": "234 Street Avenue",
 "City": "Tuscaloosa",
 "State": "Alabama",
 "ZipCode": "35401",
 "Country": "Usa"
 },
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Lienholder"
 }
]
 }
]
}

If this request is successful, you should receive something similar to this

Result: 201 (Created)

{
 "applicationType": "Transfer",
 "applicationStatus": "Completed",
 "resultStatus": "ApplicationCompleted",
 "applicationNumber": "TRTL10000056301",
 "applicationWebsiteUrl": "https://alts-uat.mvtrip.alabama.gov/Application/Transfer/Summary?applicationid=10000056301",
 "applicationApiUrl": "https://altsapi-uat.mvtrip.alabama.gov/api/Applications/TRTL10000056301",
 "validationFailures": []
 }

The 201 response status code indicates that the application has been created, but you will need to check the
ResultStatus field to determine the state of the application. If the application still has validation errors, the
ResultStatus field will be ValidationFailure. In this case, the user will need to go to the URL in the
ApplicationWebsiteUrl field to fix any problematic data. Currently updating applications is not supported via the API, so
this must be done on the ALTS website.

If the request has errors that prevent the application from being saved (too many pending applications for that VIN, for
example), you will receive a 400 response status code and the resulting object will not contain ApplicationWebsiteUrl or

ApplicationApiUrls. It will contain validation errors something like the below, however. In this case, no application has
been created, so you are free to resolve any errors returned and try again.

Result: 400 (Bad Request)

 {
 "applicationType": "Transfer",
 "applicationStatus": "Unknown",
 "resultStatus": "ValidationFailure",
 "validationFailures": [
 {
 "ruleIdentifier": "PA02",
 "propertyName": "",
 "attemptedValue": "System.Collections.Generic.List`1[Alts.Logic.AdminWorkflow.PendingApplicationSummary]",
 "severity": "Error",
 "errorMessage": "There are too many pending applications for this VIN. Existing application numbers: TRTL10000014501"
 }
]
 }

One thing that may stick out in that example is the apparent redundancy between PrimaryDocumentType and the
DocumentType field of PrimaryDocument. If we were concerned only with vehicle applications, this would obviously be
unnecessary. The reason relates to the structure of manufactured homes, which can have a primary document per
section. Currently each manufactured home section must have the same document type (e.g. an out of state title for
each one), but the model is built to accommodate potential changes to that rule in the future.

 One other interesting thing about this example is the presence of a couple of the “Has…” fields. These correspond
directly to choices made in the existing ALTS UI. For example, HasSpecialMailing indicates to the application whether it
should attempt to save a SpecialMailing field. In the example above, this field is set to false, and so the SpecialMailing

property is omitted. Also because it is set to false, even if it were included, it would be ignored. However, if
HasSpecialMailing were set to true, the API would expect that object to be included. Including that might then look
something like this:

"HasSpecialMailing": true,
"SpecialMailing":{
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Tennessee",
 "ZipCode": "34952",
 "Country": "Usa"
 }

These properties are the same as used in the ALTS website. Here is HasSpecialMailing when viewed in the context of the
UI.

Scenario #2: Create an In-State Vehicle Transfer Application
Using the following JSON request body, you can create a Transfer application using an existing Alabama title. Note that
because only one valid Transfer application is allowed for a VIN at any given time, this exact VIN/title number

combination likely will not actually work on the test site. The only real change you would have to make for testing
purposes would be to change the previous title information. Existing Alabama titles that work with the testing site can
be located at https://alts-uat.mvtrip.alabama.gov. The same credentials used to obtain access tokens can be used to log
into this test version of ALTS.

You will probably notice that the test data below is very similar to the JSON body in Scenario #1. In fact, the only real
substantive difference in this scenario is the PrimaryDocumentType and corresponding PrimaryDocument object. Because
our PrimaryDocumentType (SupportingDocumentType enumeration) is AlabamaTitle in this case, the fields that
PrimaryDocument contain will be different from Scenario #1. Only fields relevant to a PreviousAlabamaTitle should be
used instead of those for OutOfStateTitle in Scenario #1.

POST /api/v1.0/Application/Transfer

{
 "ApplicationType": "Transfer",
 "ApplicationCategory": "Vehicle",
 "HasOperator": false,
 "HasSpecialMailing": false,
 "IsOwnershipChanging": true,
 "SaleInformation": {
 "DealerInventoryDate": "2018-10-25T00:00:00",
 "GrossSellingPrice": 350,
 "TradeInAllowance": 150,
 "PurchasedDate": "2018-11-25T00:00:00"
 },
 "Seller": {
 "SellerTaxIdNumber": "ABC123",
 "SellerLicenseNumber": "492349",
 "SellerLicense": "AutomobileLicense",
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Tennessee",
 "ZipCode": "34952",
 "Country": "Usa"
 }
 },
 "Vehicle": {
 "BodyStyle": "CarryAll",
 "Code": "Used",
 "Color1": "Black",
 "Color2": "Unknown",
 "FuelType": "Gas",
 "GvwrCode": "ZeroTo6K",
 "IsTrailer": false,
 "Make": "Jeep",
 "MakeName": "Jeep",
 "MakeOtherName": "",
 "Model": "GRAND CHEROKEE",
 "NumberOfCylinders": 4,
 "OdometerReading": null,
 "OdometerReadingType": "Exempt",
 "OdometerUnits": "Miles",
 "Vin": "1GNES16S326115264",
 "Year": 1996
 },
 "PrimaryDocumentType": "AlabamaTitle",
 "PrimaryDocument": {
 "DocumentType": " AlabamaTitle",
 "TitleNumber": "51704160",
 "IssueDate": "2018-04-23"
 },
 "IsVehicleLeased": false,
 "Owner": {
 "IsLessor": false,

https://alts-uat.mvtrip.alabama.gov/

 "Email": null,
 "Phone": null,
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Alabama",
 "ZipCode": "35401",
 "Country": "Usa"
 }
 }
}

The return types in Scenario #2 will be the same as in Scenario #1, with a successfully created application returning
various information about the new application, or a failure returning the validation errors.

Scenario #3 Create an Out of State Manufactured Home Application
Creating manufactured home applications is very similar to creating vehicle applications. The first and main difference is
that instead of a Vehicle object, you have a ManufacturedHome object in its place. Because manufactured homes can have
up to four sections (sometimes called “sides”), there may be multiple identifiers. For vehicles, the identifier is the VIN
(Vehicle Identification Number). A similar standard does not exist for manufactured homes, and so the identifier is
simply called SectionId. You may see this referenced as a VIN as well, though that is more by convention, and is not
entirely accurate.

The second major difference is that instead of a single PrimaryDocument object at the Application level, each
manufactured home section has its own PrimaryDocument. It is normal to have only a single section, but it is possible to
have as many as four. The root Application object does still have a PrimaryDocumentType, as currently each side’s
document type is required to be the same.

Using the following JSON request body, you can create a manufactured home MhTransfer application

POST /api/v1.0/Application/MhTransfer

{
 "ApplicationType": "MhTransfer",
 "ApplicationCategory": "ManufacturedHome",
 "HasOperator": false,
 "HasSpecialMailing": false,
 "IsOwnershipChanging": true,
 "SaleInformation": {
 "DealerInventoryDate": "2018-10-25T00:00:00",
 "GrossSellingPrice": 350,
 "TradeInAllowance": 150,
 "PurchasedDate": "2018-11-25T00:00:00"
 },
 "Seller": {
 "SellerTaxIdNumber": "ABC123",
 "SellerLicenseNumber": "492349",
 "SellerLicense": "AutomobileLicense",
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Tennessee",
 "ZipCode": "34952",
 "Country": "Usa"
 }
 },
 "PrimaryDocumentType": "OutOfStateTitle",
 "ManufacturedHome": {

 "Sections": [
 {
 "SectionId": "6516516516516541",
 "PrimaryDocument": {
 "IsSurrenderedToAl": true,
 "IsTitleUnderBond": false,
 "TitleNumber": "MS3949243",
 "TitleState": "Tennessee",
 "DocumentType": "OutOfStateTitle",
 "IssueDate": "2018-04-23"
 }
 }
],
 "Color": "White"
 "Make": "Mfg Co",
 "Model": "Home",
 "Year": 2008
 },
 "Owner": {
 "IsLessor": false,
 "Email": null,
 "Phone": null,
 "Names": [
 {
 "PartyNameType": "Business",
 "LegalBusinessName": "Some Business Inc."
 }
],
 "Address": {
 "StreetAddress": "123 Street",
 "City": "Tuscaloosa",
 "State": "Alabama",
 "ZipCode": "35401",
 "Country": "Usa"
 }
 }
}

Your response types will be the same as those from Scenario #1. The potential validation codes and errors may be
different, since the rules are specific to Manufactured Home applications, but the structure of the responses should be
the same.

	ALTS API Overview
	ALTS Webservice
	Development Location:
	Production Location:
	Service Authentication
	Obtaining Tokens
	Access token usage
	Refresh token usage
	Token Endpoint Request:
	Token Endpoint Response:

	Token revocation

	Open API
	Operations
	Testing API Calls Directly in the API Explorer
	Querying for Applications/Titles
	Creating Transfer Applications
	Example Scenarios
	Scenario #1: Create an Out of State Vehicle Application
	Scenario #2: Create an In-State Vehicle Transfer Application
	Scenario #3 Create an Out of State Manufactured Home Application

